IJESRT INTERNATIONAL JOURNA Empirical Study On Error Correcting Output Code Based On Multiclass

نویسنده

  • P. K. Bhanodia
چکیده

A common way to address a multi-class classification problem is to design a model that consists of hand picked binary classifiers and to combine them so as to solve the problem. Error such framework that deals with multi-class classification problems. Recent works in the ECOC domain has shown promising results demonstrating improved performance. Therefore, ECOC framework is a powerful tool to deal with multi-class classification problems. The the base classifiers. This paper introduces state sparse random, DECOC, forest-ECOC, and ECOC hamming, laplacian, β-density, attenuated, loss along with empirical study of ECOC following comparison of various ECOC methods in the above context. Towards the end, our paper consolidates details relating to comparison of various classification methods with Error Correcting Output Code method available in supplement to our studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Performance in Multiclass Problems by Using Biclassification Based on Error-Correcting Output Code

Error-correcting output coding (ECOC) is a widely used multicategory classification algorithm that decomposes multiclass problems into a set of binary classification problems. In this paper, we propose a new method based on a bi-classification strategy, consisting of one-vs-one and ECOC classification. Also we introduce methods to improve a standard ECOC. The proposed method is compared to othe...

متن کامل

Multi-Label Output Codes using Canonical Correlation Analysis

Traditional error-correcting output codes (ECOCs) decompose a multi-class classification problem into many binary problems. Although it seems natural to use ECOCs for multi-label problems as well, doing so naively creates issues related to: the validity of the encoding, the efficiency of the decoding, the predictability of the generated codeword, and the exploitation of the label dependency. Us...

متن کامل

Error-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs

Multiclass learning problems involve nding a deeni-tion for an unknown function f (x) whose range is a discrete set containing k > 2 values (i.e., k \classes"). The deenition is acquired by studying large collections of training examples of the form hx i ; f (x i)i. Existing approaches to this problem include (a) direct application of multiclass algorithms such as the decision-tree algorithms I...

متن کامل

On the Consistency of Output Code Based Learning Algorithms for Multiclass Learning Problems

A popular approach to solving multiclass learning problems is to reduce them to a set of binary classification problems through some output code matrix: the widely used one-vs-all and all-pairs methods, and the error-correcting output code methods of Dietterich and Bakiri (1995), can all be viewed as special cases of this approach. In this paper, we consider the question of statistical consiste...

متن کامل

Solving Multiclass Learning Problems via Error-Correcting Output Codes

Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k > 2 values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hxi; f(xi)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorithms C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012